Студент Белякова Ольга Сергеевна

Группа <u>419</u> Вариант <u>135</u>

- 1. Построение по правоинвариантному отношению эквивалентности конечного индекса конечного автомата, который задает данное отношение эквивалентности.
- 2. Доказательство замкнутости класса конечно-автоматных функций относительно операции суперпозиции.
- 3. Операция минимизации над частичными функциями. Рассмотреть применение операции миинимизации к функции x+2.
- 4. P-сводимость и NP-полнота. Примеры NP-полных задач (без доказательства).
- 5. Применение принципа локального кодирования для получения асимптотически наилучших методов синтеза СФЭ, реализующих симметрические операторы и операторы, связанные с вычислением ФАЛ на нескольких последовательных наборах (формулировка и схемы доказательства соответствующих утверждений).
- 6. Определение сложности $L^{C}(f)$ для не всюду определённой ФАЛ $f\colon B^{n}\to\{0,1,2\}$ и функции Шеннона $L^{C}(\hat{P}_{2}(n,t))$. Утверждения о нижней мощностной оценке данной функции Шеннона и идея его доказательства.
- 7. Построить диаграмму Мура для автомата в алфавите $\{0,1\}$, который допускает множество всех слов, оканчивающихся словом 110.
- 8. Доказать примитивную рекурсивность функции f(x), равной числу решений уравнения

$$7a^3 - 4a^2 + a - 11 = 0$$

на отрезке [0, x].

9. Установить асимптотическое поведение функции Шеннона $L^{\rm C}(Q(n))$ для класса ФАЛ Q, такого, что любая ФАЛ из Q(n), где $n\geqslant 4$, при любых фиксированных значениях $(\sigma_1,\ldots,\sigma_{n-3})$ булевых переменных x_1,\ldots,x_{n-3} представляет собой элементарную конъюнкцию ранга 2 от оставшихся переменных x_{n-2},x_{n-1},x_n .